SNSB
Summer Term 2013
Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean
28.05.2013

Seminar 5

(S5.1) Let us consider the following statements
$(\mathbf{v d W} 1) \quad$ Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. For any $k \geq 1$ there exists $i \in[1, r]$ such that C_{i} contains an arithmetic progression of length k.
(vdW2) Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. There exists $i \in[1, r]$ such that C_{i} contains arithmetic progression of arbitrary finite length.
(vdW3) Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. For any finite set $F \subseteq \mathbb{N}$ there exists $i \in[1, r]$ such that C_{i} contains affine images of F.
(vdW4) Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. There exists $i \in[1, r]$ such that C_{i} contains affine images of every finite set $F \subseteq \mathbb{N}$.
Let $(\mathbf{v d W i} *), i=1,2,3,4$ be the statements obtained from $(\mathbf{v d W i}), i=1,2,3,4$ by changing \mathbb{N} to \mathbb{Z} in their formulations.

Prove that $(\mathbf{v d W i}),(\mathbf{v d W i} *), i=1,2,3,4$ are all equivalent.
(S5.2) Let us consider the following statement
(*) Let (X, T) be a TDS and $\left(U_{i}\right)_{i \in I}$ be an open cover of X. Then there exists an open set $U_{i_{0}}$ in this cover such that $U_{i_{0}} \cap T^{-n}\left(U_{i_{0}}\right) \neq \emptyset$ for infinitely many n.
(i) Prove (*) in two ways:
(a) applying Birkhoff Recurrence Theorem.
(b) using the Infinite Pigeonhole Principle (IPP): Whenever \mathbb{N} is coloured into finitely many colours, one of the colour classes is infinite.
(ii) Deduce IPP from (*).

